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AN ITERATED LOGARITHM LAW RESULT

FOR EXTREME VALUES FROMv GAUSSIAN SEQUENCES

William P. McCormick

Abstract

Let {X ,n !l} be a stationary Gaussian sequence with EX =0, EX2= n

r n=EX 1X n~*Let Z ni denote the ith maximum of X1, ..., IX and an=(n-n 2en)

1/2 1/2 2=b n=(2tnn) -(tn(4Tnn))/(2(2tnn) ).Then assuming r n(tnn) =0(0) the set of

almost sure limit points of the vectors ((r 1) )1' ( 2)- )a 1 ,.(Ze)b) 1

n n n n nf ni n fnn

is determined. The number of components Z=L(n)-o as n-. This extends a result of

Hebbar.
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1. Introduction

Let {Xn , n-l} be a stationary Gaussian sequence with EXI =0, EX =1 and rn=EX Xn.

Let zMi denote the ith maximum of X1 ,..., X that is Z - equals the n-i+l ordern n n

statistic. Set a = tntnn//V2nn and b =/2-n - en(47tnn)/2/2Tn-n . In [ ]n n

Hebbar considers the set of almost sure limit points of the sequence of vectors

Z( I ) -b Z ( 2 ) _-b Z ( ' ) -b
n n b n T_n n n ), nl}. He shows that under the assumption

a a an n n

r n(nn)2+  = 0(1) for some c>O the above sequence has almost sure limit set equal

to {(xlX 2 ,..., X): 0_5xe_..._5x, and x.<1. In the present paper we strengthen

this result in two directions. We relax the condition on r to r 2(nn)2=0(l)n r ~ n n ) 0(1) a n d

further we allow the number t. of extreme values considered to grow to infinity with
Z( i ) -b

n. Let (i) zn n . Then we consider the points in JR 0 given by (v ()
n a nn

v ( ) ,O ,O ...) where &t(n) - o as n - =. In 'R we consider two modes of conver-
n

gence--pointwise convergence and PI -convergence. With t(n) suitably bounded we
1

show that the almost sure limit set in JR is given by
00

{(XlX 2...): Ox <x , i=1,2,..., and .x.l1}

11

2. Almost sure limit set

We consider two modes of convergence in J o, pointwise which is metrized by

Sxn-yn I"-n
d(x,y) = "  l )2n-Yn 2n and t Let us observe that a point x is a limit

n1 (1+ X -YV

point of a sequence x with respect to pointwise convergence if and only if for-n

each fixed I, x1 . I ) is a limit point of (x(1) x(g Therefore withn n

regard to pointwise convergence our extension of Hebbar's result is precisely to
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weaken the mixing condition on rn since finite dimensional results suffice to prove

this case. Furthermore in this case we consider the almost sure limit points of

the sequence {(v ,2) .. .(n)O ), nl} that is we take Z(n)=n.
n 'n '*'n

However when we consider the random element (v ) ,..., v ) 0,0,...) as a pointn ' ° n

in 1 then we must take into account the rate at which 1(n) grows with n. In this

case we prove an iterated logarithm law result with 1(n) = [/n3n]. In the following

we consider the t1 case only since the pointwise convergence case immediately fol-

lows.

The proof closely follows the method in [11 although additional detail is re-

quired to accommodate the infinite dimensional setting. However Lemma 6 in 11

receives an entirely different proof here that depends on an extension of a result

of Mittal [2].

Remark: Let x = (x1 ,x2 ... )EA and assume x >0. Define the following sequences

=k
k [n(I nk)], s xi, s = xi (assume s<l) and ak [exp(k 1. Our pro-

1
(Xk)00. ~ a

gram will be to show that the sequence (v k)(1 (2) v a kl has x

as a limit point almost surely. Then since f ! X and Z as k it fol-
(k

(1) (2). k
lows easily that x is a limit point of (v ,v I...I v a 0,0...). In the lem-

mas which follow it will be assumed that rn (nn) =0(1) and that s = x.<l.nI

Lemma 1. For any e>0 we have

(2.1) P{ (vi)-x.) > £ and vM)x., i=l, X i.o.) = 0
i=l k 1 k 1

Proof: To establish (2.1) it suffices to prove

(2.2) P max (v(i)-x.) > /Xk ,  min (v() > 0, i.o.) = 0
l4i!k 5 li:Ak

. .. ... . .. - ~**. .. . .. ..- ... _- .' . J .



Further by Borel Cantelli to establish (2.2) it suffices to show

(2.3)k1 [Xk max P{v( )> x. + C/Ak' v > x ' ) l-<i-<,k)] < 0
k L j!5A k O'k Ck

,(1) (2) (k)

Let {(y , y ,..., yk ), k>l} be any triangular array with yi _ xi' li.X

and M i et~i= b + M(~
and max (Y -x.) > /k" Leta . Then we establish (2.3) by

l<i< tk 1 Ot cik "k 'k

showing that

(2.4) Y XkP{Z -

z*(i)

Let Z be the ith maximum of a sample of size n of i.i.d. standard normal
n

random variables. Then in order to show (2.4) it suffices to show

(2.5) k P{Z* (i) i=l,..., k) < CO and

kk
( ', k ' '

In considering (2.5) observe that

cxk

S (1  (1

(2.7) oR Otk

- k P{Z (l) > n(1),* '" z*(i-1) > (i-1) z*(i) < rM)

Y= ~ ak nk OakZO

Further it can be easily checked that

(2.8) = k + (1 and

-. ..... .. . . ....... . . ,,- - .... . .. .. - '" .t: . w~~.- . .L,; ... :- .. . ,-.. .. ,.. ...
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*(1) (1) *(i-) (i 1), ) ( i)

(2.9)P{ k  e k  k * }

Skk k tk ) -

Otk
_ 1 y y(t)

Thus by (2.8) and (2.9) we obtain that (2.7) equals k k1

k

Thus since Y > t k + k and *s = x. 1, (2.5) is established.

O'k 1

Next we consider (2.6). First observe that
lP{z * ( i }  - ( i )  i l, k ) - {(i )  > r ( i )  i l. .. , X }

k k %% kk

akk kk k k a

Ok z(1  (i-I) _ z*(i 1) *(i)<(i)

i2 k 'k ak ck k ak
(210 =2 lri (1 cz nk (% z

P{ ) !5 z t% <_z, n...-i1 zi-% < z% zi) -<ri)
Otk ak ak k "k k k '

+ pfz*) > Z I+ P{z() >

a'k 'k 'k

where Z 2 /Zin

It can be checked that

() > z = 0(-) and
atk alk atk -

SXk( ak Ok a k

mable on k.

. .... ....



Similarly it is easily checked that 1+2-( -a

2<. < r - (CONST.)k k
(2.12) 1) f * ( 1) _< n ( } -k Piz ( 1 U .k k <

ak k a k k

Since s <1 and v(1)> x >0 for all k, the series in (2.12) is summable.
k aOk

Now consider a term of the form

Pf, < Z* <1) n(-l) < z*(i-1) < Z "*(i) <(i)}

tk Ok a ' k Ct k k' 'k 'kz .... z , z
(21) Pjr 1 Z i(i-l) < z(i-1) < z Z( i )  M ~i}

21 k k kkak ak k

S = J 1P{ ( 1 )  <- X* !5 z ,. . ( -) X* -z *
tl..ti l a k  t1  c' k  t i_1  ck  "t k

for all t t1 .... ti-1, l4<t!<ak}

where {X ,X .... } denotes an i.i.d. sequence of standard normal random variables

and where the summation is over all 1 t 1 .... ti_ 1 <- a and t u t of u v.u v

Let 0<0<1 be fixed and to be specified later. We write

S = S + S + ... + S

where S denotes the sum over all ti , . . . ,I t_ 1 such that when the t's are ordered

t( ) <...< t(i-l ) there are exactly u indices h where t 
- t < a

Consider S . We have

fp~)(-) * * (i)k

I < r(< z,. ., - 1 ) < Xt  < Z Xt - M t~tl,..., t and l<t,
Pn( ) < <Zak**..... <Z n' t mk ak i-1 Ock . ti

-P0r1l) < Xt < za .... r(i-1) < t-1< Zc ' Xt <s 'na "t~tl'' ti- and 1-:t-,, !

(Const.)(T 0 + T uv)
O<u#v< i- V

- i) n(i)

where T s,t(°) rj %, rr1r I rl)

-1 X < z T ) < < IX =n(i) X =i)
k k k ... , < -1 z(k k 0 k
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where r = rs t and 1(0) is summation over all s t and s,t t1,... ti-1 , lss,t!_5

and where 0(-,.,r) denotes the bivariate normal density with zero means, unit vari-

ances and correlation r. Further for v>O,
(0 v) a~ )

T0, (0 t ) rlO n i, TI , Irl)
O'v s ak O-k

•P{T() < X < Z .... q < X t < z n, VI < < t Z

O'k tt~ I %t %' - k'" ~

.(i-i) < X < Z = n(v), Xs = n(i)}

where the sum is over s 0 ti ..... ti I and nd r = rst .

T is defined in exactly the same way and finally for u,v>O

u(u)

T n(v) I)

Pr ) X < .<.,ul < z ,l < z ,

.. [r -I < X t < Z , n I < Z n ... , z:

(vv-) (v+l)

-< X. -< z --n X < Z

i-I Ok tu k V c±]

We will give details only for the sum T since the other sums are handled in

the same way. For T0 first consider the case when

(2.14) minflS-tu 1, It-t U1, u="" ... -l' > a

In evaluating T0 we need to evaluate

(2.15) P(n (1) S Xtl !5 z ,... n(i-l) ! X t '  IX - ,(i), Xt nq i))

O' 1 ' - kS a
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when
(2.16) t~hl -t~h > ea , h=l,..... i-2

and (2.14) hold. Now subject to (2.14) we have that

~(i) Xt = ))= O(nk-3/2) n
(2.17) E(X tx s  x ) and

CORR(X t  Xt  = r tt + 0((Znk ) - 4 )

Therefore by (2.17) the probability in (2.15) is at most

(2.18) P{u) - c(Z nk ) - 3/2 < X tu zok + c(Cnk) -3/2, u=l,..., i-li

for some constant c not depending on k. Conditioning on X t yields that (2.18) is

at most

-2 2
(1-(b (l-c-))P{bk(1-cr) cc t z (1-cr) , u=2, ... , i-I}

where r = r

e"k %7

Iterating the procedure yields that (2.18) is at most

i-i -
(2.19) l [1-4(b (1-cr)U]

u=l k

Finally sincex and (1-cr)u > 1 - 2Xk cr, (2.19) is at most

(2.20) [14(b k-c nk )(i-) c is some constant.
(tnak)3

In the same way it can be checked that if for some uo, ]s-t < 0 but

It-t > ak , u=l,..., i-i or the same case with s and t interchanged then (2.15)

is at most

(2.21) (1_(yb ))f[l-(b -c ink )](i-2)
a k O'k (tnctk) 3 /2

i
. .. . . . .. 4
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where y > 0.

And finally if both Is-tuo < (I and t-tVIo < for some u and v then (2.15)
u0 0 '

is nt most

(2.22) (1(-yb ))2 [ 1-(b -c (nk )]1(i-3)

k k (tnaxk)

Thus we have that provided (2.16) holds

(2.23) T < (CONST.) [1- 4(b -c Enk (i-l) (CONST.) I
0 (2, i)+1) ak (nck) 3/2 , T ( ,a (i-I)

(/nak) (Yck k (eno) Yctk +1) k

Similarly if (2.16) holds we find

Ti) T (CONST.) 1
,v (i) (v) (i-1)

N +'a +1) atkazk ak
(enctk)

(2.24) (ii) T < (CONST.) 1
u,0 ( (i)+ (u)+l, (i-)

(nak) ak'k

(iii) T - (CONST.) 1
U,v (u) +V) (i-)

Thus by (2.23) and (2.24)

(CONST.) (.n2k)2 (Ci-1)) 1
(2.25) S0 ! [ Iil (N2./sIa

a <_ 7 1 k2xi)/Sk k I~e

k k

for some e > 0.

Next consider Sb. For simplicity let us consider a summand in (2.13) when

tI<t2<... < t. and

I-1



-9-

(2.26) 0 < t2 - ti , t3  t2  , t 1  - t !5O and t - t > Oou~h+l,. .. , i-I.

Then

N t I Cc ks O'k ti-I O '

for all t~t1 ,..., t i 1, l!5t!5a}

-p{fl(l)< X z .. ,n (i-i) S x z, X !5 (i)
a k t c ti-i (X (

for all t~tp ... , t.1 i- !t!a}

<T 0+ I T
0 -u~vsi-l U,

where the T have the same meaning as before except now condition (2.26) holds.u,v

Consider T. We need to evaluate

(1) ((i) x
C' I ck a ii k c'k

Suppose that (2.14) holds. Then the above conditional probability is at most the

expression given at (2.18). Therefore let us consider

(2.27) Pin(u) < X z ,ui.., -l

subject to condition (2.26).

Let K =K(ctk) [expG'Tnii)]. Suppose that in addition to (2.26) we have that

(2.28) t 2 tip *.V t M4 l - t <5K, and K <t m2- t M .. ,t i - ti-

Then given (2.26) and (2.28), (2.27) equals at most

m h i=2

%u=m+1 ' u=h+l % ak

5(CONST.)c
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where Q 1 + 6 - 6 M~l + (h-m)6 m+ + (i-2-h) and 6, 1 - Ci 6 1 -cr1 1 K 1F1 K K

where c is some constant and without loss of generality we'can assume cr1 < I

because if necessary we can work with the sequence {Xmn, n!l} where m is some

fixed integer.

Then as before we find that

(i) T (CONST.) 1
0 (2y i+l)czk

(fZncyk a

(2.29) (ii) T 5 (CONST.) I

U,O TyU)y(') +1) Q

(Lnct k) (yOk +Y k

and

(iii) T < (OS.
U,V ,(u) (v) Q

(~Y ck4y ak+1) O

Thus by the inequalities in (2.29) we have that

h 2

h M=O Q1x

k k

from which it can be easily checked that

-f
(2.30) S n :5 a. for some f > 0 not depending on h.

Finally from (2.25) and (2.30) we have that

S 5 (CONST.) k 2 1for somee >O0

Hence (2.6) holds completing the proof of lemmua 1.



-11-

Lemma 2. Let c ( i ) = b + x.a . Thenn n i n

(2.31) P{Z ( i ) > c ( i )  =l, . k i.o.} = I
('k (~k

Proof: Let ak = [1/2 c,,] and let Za be the ith maximum of the random variables

kk

k X . Let z be as in Lemma 1 and define Ik = I (i) -(i)
ktk ak k i=l [c (Z <z ak

Let J n na Ik where O<a<l is a fixed real number. Then to show (2.31) it suf-

k=[n

fices to show

(i) EJ -* as n- and~n

(2.32)

i' (i i) Jn/EJn 1 as n o

n n

The proof of (2.32) follows the method of proof of Lemma 3 in [1] with changes

similar to those in our Lemma 1. Therefore the details of this proof will be

omitted.

Remark: The sequence (v().... Vak ,0,...) has x as an almost sure limit point.

a.kC

To see this let Nn = {: 1k (V
( i) -x) > 1/n, v(i) x , i=l, ... Xk i.o.} and

N nUl N Let A = {W: V) x., izi,..., X i.o.} and A = AnN . It is easy
(1) (Xk)

to check that if wEA, then (v() (W),..., V k (w),0,0...) has x as a limit point

and by Lemmas I and 2 P(A) = 1. Therefore by the Remark preceding Lemma 1, we have
(1) Cta k )

that x is an almost sure limit point of (v (k 0,0..

Lemma 3. Let x = (xl,x 2 ,...) be any point in IR with O5xi*l-x i , i=1,2,... and. (1) (t n)
x.>l. Then x cannot be an a.s. limit point of the sequence (v , ...,v 0,0...)

n n
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S +1

mmProof: Let m be such that s =1 x. -1- and x >0. Letz

i=l,..., m. Then since I1 zi > 1, it follows as in [ 1] that

P{v(i)> zi  =l. m i.o.} = O. Let N = {w: v()> z1, .. v(m)> Z i.o.}.
n ' n ""'n m'

Then if w E NC, x cannot be a limit point of (v 1  v n 0,0,...) because for

all n sufficiently large

t(n) s +1[ (i) -x . { >  rmin (xz m
n 1xi-zi IS 2 -) X m
l l5i_<m m

A useful uniform bound on the tail probabilities of the normalized maxima for

a Gaussian sequence is provided by Lemma 1 in [2]. We state a version of this re-

sult which is suited to our problem.

Lemma 4. Let cn = /2-nn . Let {X , k=l,...,n, n=l,2,... be a triangular array

of standard normal random variables. Then setting r n(i,j) EX. X.

M max X and6(x) = sup r (i,j)l we have
n kn k,n n suInij)

tA2

e P{c (Mn-bn) < -Al o(l) as A

uniformly in n for all t in a neighborhood of zero provided

( i ) l i- - C 1 < 1
n

(ii) 6 n(nojtnn = 0(1) for some fixed 0<a<l.

Lemma S. For any fixed positive integer £ and e > 0, P{Z n < b - ca i.o.} 0.

It is easily checked that it is sufficient to show P{Z (t-  < bnk+l - a , i.o.}=O.

Also since for k sufficiently large b - ca < b - C/2 a it is enough to
nk+l nk l nk n

show

(2.33) P{Z n b - e an, i.O.) = 0
nk n k nk'
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Observe that

PURE < b -£a P( ) > b + 2a
n n n n n n

(2.34)

+ P{Z'J)< b e a < Z (1)< Z <b +2a}
i=2

Now

(2.35) P{Z~l > b + 2a I n(l-O(b + 2a )-___
n n n n n (,nn) 2

Further we have that

P{Z ) < b - ca < Z(i-1) < ZM' < b + 2a
(23) n n n n~ n n n

I P{X. b n- : a n j~tl.. t.i1 1 15j! n

1i .... i-i

and b - c a < X < b + 2a~ u=l, ...,I i-ln n t~ n n

For a fixed 0<0<1 and n sufficiently large

P{X. b n- c a n jot 1, .. tijf 1 glj!5n

and

b -sca n< X t<b n+ 2a jU=,..., i-li

b +2a b +2a
n n ni n

:5 f .. f P{X. :5b - ca I-

b -Ea b -ea j n cj-j
n n n n

(2.37) U ,.. i-1, !5slt= x, U ,.,ii

dP{Xti cdx1, ...,I X~ t cldx iI

S P{J < - E/2 a0 jtn, u=l,..., i-1, l!Sjinl

O{b n c a n ! X !5b . 2a n um,..., i-11



-14-

-2
where CORR(Xj = rjk + 0 r n).

n

Let I -< t l,n.... til, n !5 n be chosen to maximize

P{Xj !5 bn - E/2 an, jj-tuI > n , u=l,..., i-1, lsj<_n)

Let Yl,m Y2,m.. Ym,m represent the X.j, J-t u > n , u=l,..., i-1, 1<jsn in their

natural order and let Mm = max Y k Note n - 2(i-l)n a- m - n. Then the sum in
m l<ksm

(2.36) is at most

(2.38) P{M ! bm - /4 aI * P{bn - an :- X t b n + 2a..no
tI  t ... tUin

It is easily checked that the Y satisfy the hypothesis of Lemma 4. Hence
k,m

(2.39) P{M -< b - E/4 a < e - c(tntnn)
2

for some constant c > 0 not depending on n.

Further if min{itu-tv1: i5u<v<_i-l} > nO , then following the approach in Lemma I

one can check that

P{b - c an - Xt  5 bn + 2a , u=l,..., i-l} < (1-4(b n-ican))
u

(2.40)

=(1/n iEtnfnn) i- 1

While if there are exactly h indices say u1, ..., uh such that when the t's are
0 0

ordered t( 1 ) t1) < n..., t(Uh+l) - (u) < n thenorderd t(U~l) tul(uh t~u)

Pfb - c a 5 X b n+ 2an, u=l,..., i-l}~n - n uX bn.,

!5 ( 14(b n6)) h( 1.@(b n- ica n) ) 1-h-1

where 0<6<1 is some constant not depending on n

(2.41) 5 (1/n) h6 2 i-h-1 eCi 2(tntnn)

Therefore by choosing 0 < 62 we have by (2.39), (2.40) and (2.41) that (2.38)

is at most e - c ( t n f n n ) for some c > 0. Therefore by (2.34), (2.35) and the above
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we see that

P{Z(L) < b - e a 1<

n n n (tnn) 2

Since this series evaluated at the nk is summable on k, (2.33) holds completing

the proof of Lemma 5.

Theorem 1. Under the assumptions of Lemma 1 the almost sure limit points of

the sequence (v() v(tn),oo, .) in t coincide with the setn n

A =*{(x1 ,x2 ... ): 0 5 xi+ 1 ! x i1,2,..., x. - 11
1 1

Proof: Lemmas 1 and 2 establish that each point of A is an almost sure limit

point while Lemmas 3 and 5 establish that no point in A can be an almost sure

limit point.
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